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LOW REYNOLDS NUMBER CALCULATION OF TURBULENT CHANNEL

FLOW: A GENERAL DISCUSSION

1. Introduction

Direct numerical simulations (DNS) of tminlMlent shear flows have recently provided

researchers with a new tool that has been used to study the dynamics of turbulence

il great detail. In some cases these calculations have provided information that would

be difficult or impossible to obtain from experiments and in other cases they have

provided new results that were latter confirmed by experiments. At the Naval Research

Laboratory, we have recognized that DNS may provide new insights into problems that

are of particular interest to the Navy. Problems to which DNS may be applied in

the future include investigations of the sources of turbulent flow noise. the physics of

polymer-induced drag reduction, and turbulence-free surface interactions. However,

in order to embark on a detailed study of any of these complex problems, it is first

necessary to establish confidence in our ability to perform meaningful simulations of

turbulence in relatively simple cases.

The channel geometry has been chosen by many investigators as a starting point for

DNS wall-bounded shear flow calculations because of both its geometrical simplicity and

the ease with which it can be handled numerically. However, in spite of its simplicity,

intense investigations of the high resolution calculations of Kim. Moin and Moser(1987)

(IKMM) . for example, have yet to unequivocably unravel the spatial and temporal

evolution of the coherent vortical structures which experimental evidence suggests have

their origin near the wall. Therefore, the complex physics of even this simple wall-

bounded shear flow. it seems, warrants continued intensive investigation in the hope

that such studies may reveal nore details of fluidemental wall turbulence phenomena

of whic'h. 1)eIhal)s the inost important is the nature of the Reynolds stress producing

evemits. We have therefore un(ertaken. ili the last few years. an effort iin DNS which

)alrallels. in sonic respects. the efforts of other groups for the pur)ose of eventually

aidplying these niethods to attack the more comlipex prolbleis nmeition, d abo(vc. In

this report we review the progress that has receitly been madic at NI-L in mlioderate

Manuscript approved December 8, 1988.
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resolution, low Reynolds number DNS channel flow calculations. In the future we will

report on progress that has been made in applying DNS to more complicated geometries

and on the results of higher resolution calculations.

In Section 2 we review the numerical methods that have been used to perform DNS

calculations of turbulence. In particular, wc discuss the difficulties associated with oper-

ator splitting methods and the methods that have been devised, such as Green function

methods. for overcoming operator splitting errors. We alio propose a modification of

the original Green function method devised by Marcus(19S4) which we will analyze

and test in future investigations. We also discuss methods that have been devised to

solve the equations of motion without resort to splitting. We conclude Section 2 with

a review of the computer codes that we have used and note the algorithms upon which

each is based. We have created numerous datasets which cover differing length and

time scales which can be used for distinctly different purposes. The attributes of each

dataset is listed at the end of Section 2.

In Section 3 we discuss one and two point statistics from several datasets and also

present some preliminary conditional sampling results. We find that in spite of the low

resolution of our calculations, our results compare well in most respects to the higher

resolution calculations of KMM and also with experiments. We note, however, that

our computations give somewhat lower intensities and somewhat longer streamwise

length scales than the KMII resitlts. We speculate on several possible reasons for these

differeices.

We also include. in A1 )pemmdix A. a discussioln of the effects of aliasing errors oil the

lonm-tinme behavior of the ealIcmlat ions. W\e present evidence that the numerical solu-

tiois to the Navier-Stsk (s (' j11mtiis llay bc s'verely and adversely affected by aliasing

rrrors. Tie evidence presented itidicatcs thiat if these errors are not removed, the solu-

tion re;aches a chia ti,' st eadv st lte" which i r marka bly sinilar to a weak transitional

turlulent flxw. That is. we hm; ye foud that aciasin errors have a damping effect on

the tu'l letncc which has yet to 1 1 l 'st C C .



2. A Review of Numerical Methods

Here we review the principal numerical methods that have been employed in the di-

rect numerical simulation of turbulence by nuiiirous investigators over the past decade.

We place special emphasis on a review of the methods that have been used in the sim-

ulation of wall bounded turbulence. Orszag and Patterson (1973) performed the first

simulation of homogenous isotropic turbulence which required 32' grid points. A spec-

tral Galerkin approach was emi loyed in which trigonometeric functions were used. The

next major direct simulation was the turl)lileit channel flow calculation of Orszag and

Kells(1980) and Orszag and Patera(1983). In these simulations one homogenous coor-

dinate using trigonometric functions was replaced by Chebyshev polynomials. In the

first paper. the problem of transition to turbulence in a channel geometry was studied,

and in the second, the study was extended to turbulent flow. At the same time there

was work being clone at NASA Ames (Iini and Moin( 1982)) and other institutions on

large eddy simulations (LES). LES invohes many of the same numerical techniques, but

includes a term in the Navier-Stokes equations which models the unresolved turbulent

length scales.

The next major step in direct simulations was taken by Marcus (1984) and Schu-

mann (1985). This improvement iinvolves the use of Green functions or so-called in-

fluence matrix methods to inl)rove the iml)lementation of the boundary conditions.

This method iunproves the convergence 1)roperties of the earlier methods and will be

discussed in detail shortly. Marcus azIplied this method to the Taylor-Couette problem

and satisfactorily predicted wave speeds. Schmiann applied his version of this method

to turbulent channel flow.

Th.re are difficulties in the above liethods reclated to satisfying the inconipressibil-

it" condition which cannot easily be oNerc(me. An alteriative is to rewrite the Xavier-

Stokes eqma tions as a fo~iith-)r(her ('(i, tion f()r the normal velocity aid a second-order

equation for the niorima1 vorticity. Ill this fi.rm. the ('l(matiois are uP we dihicult to solve.

1)1it incOiil)rssibilty is satisfied implicitly.
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2.1 Governing Equations and the Channel Flow Geometry

We are particularly interested in studying turbulent flow between two rigid parallel

walls. This choice represents a compromise between scientific interest and numerical

effort. The streamwise coordinate is x or xi, the wall normal coordinate is y or x2

and the spanwise coordinate is z or x 3 . The computational domain used throughout

this work, in terms of channel half-widths, is 2 in the wall normal direction and 5
in both the streamwise and spanwise directions. All calculations are performed with

Chebyshev polynomials in the wall normal direction and Fourier series in the streamwise

and spanwise directions.

The governing equations for this problem are the Navier-Stokes equations in the

so-called rotational form:

0u u. u 1-- =ux w- V(P+±-)±+1V 2u+f, (2.1)
ut2 Re

and the continuity equation,

V. u = 0. (2.2)

In these equations, p + ' is the dynamic pressure head, Re is the Reynolds number

based on channel half-width and friction velocity, and f is a body force.

It is possible to eliminate the pressure from the above equations. This results in

the fourth order equation:

a, 1 V
-72, .) , + , , (2.3)(9t - r

whoret

2  02 a a(
,(.+. 0..2 )(u X )2 -{0  (u XW)3 + 0 W),}
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for the normal velocity. In addition there is a second order equation for the normal

vorticit v:
a A7 + 1 (2.4)

\V1 tRewith

00
N, = .- (U x W), - - (u x W) 3 .

In this formulation the flow conserves mass implicitly.

For all the schemes. no-slip boundary conditions are imposed at the walls. From

the continuity equation it follows that an additional boundary condition at the walls,

0112

can be derived. This boundary condition is needed when solving the fourth order

equation for the normal velocity. In the streamwise and spanwise direction the use of

trigonometric functions requires periodic boundary conditions.

There are several ways to non-dimensionalize the Navier-Stokes equations. The two

methods used currently are inner scaling and outer scaling whose definitions are given

in Table 2.1. When describing turbulent physics close to a wall the only parameters

available that can be used to forin length and time scales are the viscosity and the

wall shear stress. For inner variable scaling we define the friction velocity, u*, a length

scale, 1*, and a friction or wall Reynolds number, R*. This scaling is the appropriate

one when discussing the flow behavior in the viscous sublayer, the buffer layer and to

some extent the logarithmic layer.

\hel deseribilg the physics far from the wall. outer scaling is used. In turbulent

chanel flow the outer scales are usutally taken to be the mean centerline velocity, U,

and the channel half-wirlth. L2 . Outer scaling is appropriate when discussing the large

scrale properties of the flow. In the cirrent state of direct simulation, the core region

of the flow is sm ll '1,),I this scalii g im vt ;,q offective as inner scaling. In turbulent

transition studies outer scaling, however, is more appropriate.



Table 2.1

Non-d imenisionalizations

Variable iler Sc.tiing Outer Scaling

Length L* -

Viscosity' J/

Number

\Xl-n innier scaling is usedl, the driving force can be relatedl to the mnean wall shear

stress (and the friction velocity) inl the senlse that the wvall Shta-r ,ivss will :uliv-rge

asv miptoticallv to or rather oscillate ab~out a mican value. The wall shear stress and the

friction velocity canl be relatedl to the driving"' force inl the following mlannier:

*2 oil IPo

where P0 is thle static pressurie. A lairge scale velocity is niot specified since it is not

Iice(ledl Wh\li 01ute ('c a lil. V, islse'l t his rela t io Illp il) 11 st hold(. 1 ilt t here Is thle ad-

(Ilit ( )1 1 lie"( to spci~fy a I'la gc scil lc velor)it V. Si lice thle're Is no unlique relationship

I )(t WE oii r hc iii('a t ii)lllellt co lit (l-ii1 -if'\(10(1t. ; l11(1 thle NN. II shevar stre(ss. thle mlost nlat-

1Ira1 u'10 )ccit v to choos"e i" t lic iit;ial lilo anI c i t crlie vo 1 Wit . Sinlce omn. mlainl interest

is fu lly dlevelop~ed turii)1ilemlice all 11(1 l of ITI)hiIl-it : ;u:' 1jOH,1al ftirlt her d isci mr-X,1i: will

be ;In tflye conitext of lilii sca hulg.
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2.2 Time Stepping Methods

The incomlprcssible Navier- Stokes equation., form- a non-linlear coup~ledl set of partial

differential equations. There are two major difficulties with these equations wheni trying

to select a time-stepping schemne: the non-hlcaritv of the convective term and the

enforcement of the incompressibility condition. These two problems are handled in

very different ways. The extreme complexity of the non-linear term makes treating it

implicitly very unattractive so that it is generally handled with an explicit or so-called

seiii-ilniplicit numierical mnethod.

The second prob)llemn. enforcing incompressibility, is equivalent to solving the time

dependent Stokes pr1oblemlf. The Stokes problem is the NairStokes p)roblem with the

incomp)ressibilty equation but wvith no convective termn. The statement of this problem

is givenl as, follows:

=-Vp ++-V2U, (2.5)

V-U = 0 (2.6)

and

U= 0011l . = ±1. (2.7)

There are two miethods for dealing with this p~roblem: the split schemes and the

llnslplit schieli". In the split schemnes the-- coupled linear Stokes equations are separated

into a pre'(sure step and a viscous step). The incomnpressibility condition is enforced

(hln1iig" the pre"Sure step. In the unslplit schemies a fourth order equation for the vertical

velocit v is forinied. It satisfies, the incomlpressib~ility condition implicitly. Note that

even thle i tiisplit scliciit, r-equ1ires the splitting off of the non-linear terms. The 'split' or

1 ii'.1it haacerof it scleiiie In tile conitext of this paper refers only to the algorithm



usdto st Ave thle Stokes prAe Avariety of split schemies are used Ii the computer

CO )de5, for t inltiice silitilat i( )1 11O W operat ioial at NB L and1 a code using the unsplit

s chliii is no0w 1111 (lovelo)lilt.

2.2.1 Time Split 'Mlethlods

The mn niva t io for uigthle split sch mle is iiicirical simpllicity and1( efficienicy. It

invoAlves VCdlili'v ai Compnlica te Co (t of ('1 l( (ld ((p18" t iolls intit( simpiler set. 'Unfort u-

iiately. the sip 1 liflcat i0o1 occ1urs at thle (xet.s f all imupro per impjlemnlt at ion of the

1)01 iilav (0 l~liIinIi the S t()k( d 01i el) scrilw "Ieoi v)O . thle )151'Cfield exists

to "Itisfy the inic(n)l1)1('sih ili t VUy li ) Eaich o)f the t imle-(lelpendlelit equations is a

( ( (1( (1 hr (.j18tinwithI t w 1 I ivr c(,n10 it imis: the z() v'elocityV condlition at

=± 1. They f- willa ii be1u1 t c1(S( sed st o)f equa tions. W\e do( not wvish to solve

this u ull( st of ela t ionls.

The Stokes proh in can be simiplihed( 1by splitting it ill tNNo( parts as follows:

The incompressibility step) is.

Oil Vp,(2.8)

V 0(. (2.9)

;111(1 the io \j()1j ,tc) is

--- (2.10)

Ille ,plittiutl ',C]1(,] 11 ilit o e Ai.t Iiict tliiw(',ji1 ror rvi~ Israeli anid Dev-

ilh l9: hic "~iiii~tetho~&oftie' vi'.cifl or i-lic probleiciis. Therefore there isl

S



no advantage in specifying a high order time stepping scheme. In addition, the steep

spatial gradi(ts near the walls require a fine mesh and these terms must by handled im-

plicitly in order to avoid a strong time step constraint. Typically, an Adams-Bashforth

schenme is used for the nonlinear terms and an implicit Euler method for the linear

terms. A Crank-Nicholson scheme may also be used.

We note that boundary conditions have not vet been specified for the incompress-

ibility step. The only proper boundary condition is the no-slip condition imposed after

the pressure step (Marcus. 1984). However, a boundary condition must be specified at

the intermediate step. In this step there are four equations for four unknowns and they

can be solved for a single variable which is either pressure or normal velocity. Solving

for the pressure field results in a Neumann problem while solving for the normal ve-

locity leads to a Dirichlet, problem. There is no difficulty in specifying the boundary

conditions for the linear viscous step.

A. Dirichlet Methods

The original Orszag-Kells(1980) algorithm for simulating turbulence between flat

plates uses a normal velocity formulation to satisfy the incompressibility condition. The

semi-imlplicit Adams-Bashforth Crank-Nicholson scheme, which will be described later,

is used to treat the non-linear term. A backward Euler scheme is used in the pressure

and viscous steps. Due to a strong memory constraint, an explicit Adams-Bashforth

.schemie is used in all the algorithmis discussed in this work, although the treatment of

the non-linear term is still under study. When the non-linear terms are included, the

three steps iii the algorithm can 1)e written as follovs:

(a)t he non-linear step:
-3 F " nF 1  (2.12)

_At 2 2

whcre

F ux w -- f



(b) the pressure step:

02 )2 02 00a

=( + _i )u -. -( tIi + C13  (2.13)
- 013-a Ox 1  OX3

112 =0 on, X22 1.

Midi (c)the viscous step:

- u 1 2 (2.14)
At R(

U + 1  
0 O1n X 2  +1.

-Note that only during the intermediate pressure/continuity step is the continuity equa-

tion satisfied, while only at the end of the viscous step are the boundary conditions

properly satisfied. This inconsistency can be seen by examining the normal momentum

equation of the continuity step:

) At (2.15)

where [1 = p + u . which implies that at the walls

0 , - on X.) = ±1. (2.16)
ax, At

This is not consistent with the Navicr-Stokes eqimations for the normal momentum

(v'altlat(l at the walls ami(l has the (,f'eet of introducing spurious pressure forces at the
walls.

B. Niiimiamiim MJethods

A l,m,,iiry conditi(m fir th. pr,,sslre fi'ld cain be developed 1)ased on the as-

,u1itll )tiii tliiat at hig'h 1,Reyll(ls ni iinti ers. the inviseil boundary conditions are good

;,1,1roxiiiaions. Fromi the Xavier-St( kes equation in the wall-normal direction the

fllowimg, l)olui(la.y coliditio'il catI hec (lovoopl)e:

0 1 02
--, --- I/, ) ., = x ±1, (2.17)

0/2 fi' J

10



which in the inviscid limit becomes

C 1= 0 on = ±1. (2.18)
Ox 2

The complete algorithm is given by:

(a.) the non-linear step:
Uri-__ - 1 . (2.19)

(b) the pressure step:

V 2 fIn+l = v---(2.20)At

0 Ol X2 = ±1,

and (c) the viscous step:

u -  1 Vu+1 (2.21)

A t Rc

u11-' = 0 on X2 =±1.

From (2.20), the pressure boundary condition implies

12 =U 2 011 (2.22)

Ve find. therefore, that there is a fictitious flow through the boundary during the

incoml)ressibility step. One way to avoid this difficulty is by using a Green function

approach.

C. Green Function 'Methods

The difficulty with the Orszag-Kells algorithm is the lack of proper boundary

conditions at the intermediate pressure step. In an attempt to minimize the errors

indi(ced by thesc difficultics, MIarcus (1984) developed a Green function method to add

a correction to the calculated pressure field. He solved the incompressilbility step for the

pr('ssur and made the observation that the pressure step is a linear non-homogeneous

1)rolv)ll with inon-homogeneous boundary c'onditions. The solution rail then by divided

11



into three parts: one which satisfies the inhomogeneous equation with homogeneous

boundary conditions and two other solutions which satisfy the homogencous equation

with non-homogeneous boundary conditions. Lct

1IT+ 11 ++ 1 +H7 1  (2.23)

where flIz+l is the solution to

, tV2fl + 1 = V. it, (2.24)

subject to

0 on x = ±1, (2.25)

and

V 2II = 0 (2.26)

subject to inhomogenous boundary conditions at the upper and lower boundaries. The

boundary conditions for the pressure correction can be found by substituting (2.23)

into (2.20) and evaluating them at the walls subject to

, +rl=+ 0 on X2 =1. (2.27)

This leads to the following condition:

A-t-- a At H2 t+,+' -- 1 , on X2 = ±1. (2.28)
0.1., " c '2

'At a .rill + At Vu.'"+j- - At-II+ '' , oil x" = ±1. (2.29)
OX 2 rt R -2X

Note that u' + is not known (hiring the incomlressibility step. However, Marcus

asserts that this boundary condition is true if and only if:

V. Uri + , :
- 0..x, = ±. (2.30)

12



To satisfy these boundary conditions, the Laplace equation for the pressure corrections

is solved for arbitrary Dirichlet boundary conditions. The solution can be written as

(following Marcus' notation):

rIlcnt (-X2, k,71 I kx 3) =- a"-t'l(]kr, ]kx ,, 1X (xr2, +'rl Cn)-/ a +l(kxlI kx.)X,2(X2, kl, kx.)

(2.31)

vhere V, and '2 are solutions to the Laplace equation with the following boundary

conditions:

1, X2 =1,

and
A:2 = 0, ,X2 = 1;

[ 1, .r2 =-1.

Note that they are independent of the fluid flow and need to be calculated only once.

Then ,ct

it = f. + fu, (2.33)

where

f,= f - LAt vIfI' +1 , (2.34)

and

it,= -At v " +i. (2.35)

The final viscous step is

'2 = [1 - v21112 + [1 - C,2]-I ¢ (2.36)
Rf Rc

wliere

ai1ld

111+1 - [1 - Atv2-1

13



The operator 1 - 7-tV2 is inverted using the proper Dirichlet boundary conditions.

The remaining undetermined coefficients a + l and a"+I are found by applying the

boundary condition given by (2.27).

D. A Proposed Alternate Green Function Method

The Green function formulation developed by Marcus is only a correction to the

sp)litting algorithm and still suffers from one of the main difficulties associated with

splitting schemes. Since the Navier-Stokes equations consist of three second order

operators (three momentum equations) they form a sixth-order system and therefore

require six boundary conditions for their solution. In the time splitting algorithms

there are usually four second-order operators with a total of eight boundary conditions

which must be solved. The Marcus correction improves the splitting algorithm, but

does not correct this problem.

The following algorithm is an attempt to solve this problem. The proposed algo-

rithm requires six boundary conditions and only three Poisson equation inversions. It

has not been implemented to the best of our knowledge nor has the algorithm been an-

alyzed for stability or accuracy. The algorithm is similar to that of Marcus in its use of

Green functions. It is included here since it may be the basis of transition calculations

using non-Newtonian constitutive equations. In the next section an algorithm w.'ill be

presented which is better than the split algorithms but it should be recognized that for

complex non-linear constitutive equations in non-Newtonian flows a split scheme may

be more manageable.

The objective is to solve for the normal velocity in the continuity and viscous steps

using 1)oth z ero flow and zero flux boundary conditions applied after the viscous step.

Tis can h acconil)ishe(l through the use of Green functions which couple these two

step" throlugh the boundary conditi)ns. The Green functions must be evaluated and

the accoipaINyiun coefficicnts must 1)(' deterinined to satisfy the boundary conditions.

The upl)(la ted streaniwise and spanwise velocities can then )e computed at the conti-

in iity step. No 1)olida rv coinditions will 1 e imposed at this stop. The remaining two

14



equations in the viscous step for the spanwise and streamwise velocity can be combined

to form an equation for the normal vorticity. Solving for the normal vorticity requires

only one Poisson inversion and two boundary conditions. The boundary conditions can

be derived from the remaining no-slip boundary conditions. The application of two

sets of boundary conditions in the normal velocity problem is not improper since two

sets of second order problems are being solved. The result is the same order as the

original problem and there is no need to invent boundary conditions for the pressure

field. By solving the problem in this fashion, a boundary condition for the pressure

field is never specified. The use of a no flux boundary condition is consistent with

enforcing continuity at the wall. The accuracy and stability of this scheme has not yet

been determined. The Green function code currently being used will be modified to

test this algorithm.

2.2.2 Time Unsplit Methods

The unsplit schemes are preferable in that they satisfy continuity implicitly and

the normal velocity and normal vorticity are uncoupled if the non-linear terms are

neglected. The fourth- order problem is solved using several auxiliary problems and

the second-order problem for vorticity is solved directly. This formulation was first

discussed by Orszag and Patera (1983) and later implemented in a simpler form in

the large-scale direct simulations by Kim, Moin and Moser (1987). It is the latter

formulation that will be used.

Using the Crank-Nicholson scheme for the linear terms and the Adams-Bashforth

scheme for the non-linear terms, (2.3) and (2.4) can be rewritten as

At v 2 )v 2 U ' = (1 + V 2 )V 2?," + A(3N - N'l( 3

2Rc -2 2R(,,+9N" ) (2.37)

arid
_At _72)W,,+= (1 +At V 2 )W,, At

(1- 22(1 2 Re 2 +  (3 wN 2 - N' -),2 (2.38)
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where the known terms have been moved to the the right hand side. These equations

are subject to the boundary conditions:

agtt 2
U') - '.2 0 on x, = ±1. (2.39)

OX2

The vorticity problem is an inhomogeneous Poisson problem with homogeneous bound-

ary conditions. It can be solved relatively easily. A Chcbyshev-Tau method will be

used. The vertical velocity problem can be solved if it is broken into a homogeneous

problem and two inhomogenous problems:

I - + 1 + +I" l i -a -i (2.40)

which satisfy the conditions

lp =U+ = u = 0 on X2 = ±1-, (2.41)

and
III) ( , + ++ + a-i) 0 on X2 ±1. (2.42)

Ox 2
To solve these problems, introduce the auxiliary variable ( such that

(n+J = V7u 2 +. (2.43)

Then the particular problem is

(1 - t V 2 ),+ = (1 + V -C + -t (3 N - (2.44)
Me 21?((244

and

(2.45)

subject to

1,'+ '  0 on x.) . (2.46)

and

0 o)1 ., = ±1x (2.47)
I, -
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Then the particular problem for satisfying the upper boundary condition is
A~t

(I - V)( +
2 Re = 0, (2.48)

and
+ = c.+ 1, (2.49)

subject to

= 0 On xl = -1, (2.50)

with
(n+1 if{1 i2= 1  (2.51)+ 0, if X,2 = -1. 2-1

Then the particular problem for satisfying the lower boundary condition is
At 9

(1- 2tV2)2n+  
- 0, (2.52)

and

-+ +1, (2.53)

subject to

ul+1 =0 onX 2 =+1, (2.54)

(,,+1 = 0, if X2 =1;
I, if.r{0 =- 1. (2.55)

Given the solutions to the auxiliary problems, (2.42) can be used to find the unknown

coefficients a+ and o -.

2.3 The Non-Linear Term

Treatment of the non-linear term in the Navier-Stokes equation has two difficulties.

The first is the evaluation of its spatial charactcr. Originally. Orszag and Kells(1980)

suggested the use of the so-called rotational form of the Navier-Stokes equations in

which the non-linear term is written as u x w). The objective was to recast the non-linear

term in a quasi-conservative foirm as suggested by Fornberg(1973). If the calculation
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is not dealiased this form may not be quasi-conservative. As discussed in Appendix A,

the use of this term with and without the aliasing terms leads to significantly different

results. Horiuti (1987) and Zang(1988) have studied this problem numerically and both

suggest that if the calculation is not de-aliased then there arc bcttci forms for th. non-

linear term than the rotational form. All the sinmulations currently being preformed at

NRL are de-alaised.

As discussed earlier, there are two different time stepping schemes used for the

non-linear term. If the non-linear portion of the time split Navier-Stokes equations is

written as
OU = w, (2.56)
Ot

then straight forward application of the Adams-Bashforth scheme is

.-F_ - -F,,_. (2.57)
At 9

where F is the non-linear term. In order to reduce the convective instability of this step

Orszag and Kells (1980) suggested rewriting the lon-linear step by adding U(x 2 ) c"U

to both sides of (2.56). The left hand side is treated using the Crank-Nicolson implicit

scheme and the ilght hand side by the Adams-Bashforth scheme. The resulting time

steppinig equations are:

_l - U " 3 F n F 1 1 2)( N1'+ 1  (?fin  n - l (
-F-F- - -2" + - ). (2.58)

t 2 2  ( 2"
2 )( 1 O.1. 1ij l

Note that the seni-iimplicit scheme requires aim additiomal six variables. If the interme-

lia ,, r,.,lts iu'" and U",,- .are not uised the order of accuracy is reduced to O(z1t). Due

to tHie lare mmeinory requireeniciit. this schemie is not 11smally used.

2.4 Spcct r;i1 Meth(ls

-tr. we, r'Ive oIly I I)rief s1 imiimiia iv of spectma lmethods necssary to descrile the

diff'ere-nt comnplit 'l(s (1mrcrntly w NRL. Tie rea(er is referred to several comlplete
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reviews of spectral methods (Gottlieb and Orszag, 1978, Gottlieb, et al., 1984 and

Canuto. et al. 1988) for more detailed descriptions.

The Navier-Stokes equations are discretized in the planes parallel to the walls

using a Fourier pseudo-spectral scheme. In the direction normal to the channel walls

Chebyshev polynomials are used. Neumann or Dirichlet boundary conditions can be

imposed at the wall. In the flow direction and in the spanwise direction periodic

boundary conditions aie used and this facilitates the use of a trigonometric Fourier

series in these directions. The velocity field is represented as

,1,-i N-1 P

u(x t) = E E S finm, 1,p, 0 exp(i(am + 13n))Tp(X 2 ), (2.59)
nz=-l n=-Np=l

where ce = -, 2' , -, and = -1.
The algorithms described above require at least four Poisson solutions. For exam-

ple in the Dirichlet/normal velocity formulation a Poisson equation is inverted for the

normal velocity in the pressure step and three Poisson equation, are inverted during

the viscous step to update the three velocities. In the operational computer codes at

NRL two different methods are used in inverting the Poisson equation. They are the

collocation and the tau methods. In the collocation method an interpolating polyno-

mial is used to convert continuous equations in space to discrete equations. It can be

shown that this is formally equivalent to taking a discrete cosine transform of the data

at the collocation points. If C is the matrix representation for the discrete Fourier

transform, C 1 its inverse and D the discrete derivative operator in matrix form (Got-

tleib., et al. 1984). then the matrix operator, M, which takes a real space function into

the derivative of the real space function is:

M = C-'DC

and the second derivative operator is simply

MM.
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The boundary Cond~itions call be built into this maltrilx and the solultioni to the Poisson

equation is the solution to:

M2 U= S.

where u is the solution and s is somne source term. Sinlce MM is a full matrix. normnal

wnmierical met hods are not effective. H1aidvogel and Zanmg ( 197S) describe a method of

decomposing the full mnatrix into eigenvalues and Ccievectors. Then the inversion be-

conies a simplle matter of matrix multiplication. After the decomposi tlon,. tis method

is fast and retains the infinite Order accuracy of spectral methiods.

Ini the Tau method. the solution to a p~roblem with its boundary conditions is

representedl with n + k expansion functions. The coefficienlts are found using n equations

dlerivedl fromn the governing equationis and k equations derived froim the k b)oundary

conditions,. The solution is rep~resenitedl in Fouricr-Chiebyshiev coefficieiits. In the case

Of the .1.2 (lirection. the Poisson equatio.n Cani be rewritten as a quasi -tridiagonal system

that call be efficiently solved with a mnodified Gaussian elimination algorithmn. The

bou~ndlary cond~it ions, are explicit ly 1built Into thle mat rix operator.

2.5 Computer C'odes and Data Sets

There are four operational Computer codes for the direct simulation of turbulence

ini a channlel cuirrently in uise at NRL. The first two listed inl Table 2.2 were written

by Orszag and~ his students using the Orszag-Kells algorithmn (Dmrclet boundary con-

dlitionis Ii the pressure step). Iii the first programn. a very clever method is used to

miiaage the mnemory aid 11Inp1 ut-ou1tput ( i/ o). Only a quarter of the computational dho-

iimaiii is Ii compiluter memiory at any timei(. and to p~revenit wastedh i/o time thjis time

had to lbe minimiized anld carefully overlaid by conicurrent cpu time. In the -seconrl aiic

rellinaiiiiim coilhplmter (codes. thle (hita is always residlent Iii the computter iemory. The

last twuo opera tioiial coimiiplitem C(odes wvere developed 1y ).Johin M cLaumghlin ( Clarkson

Umiveri t y ) a i1(1 ext eiisively uiJ(ated by a id ob t aimned fromin St eveni Lyons and Thomas
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Hanratty (University of Illinois). The fourth computer code uses the Green function

algorithn developed by NMarcus.

Table 2.2

Computer Codes For Turbulent Channel Flow

Number Split/Unsplit Boundary Conditions Memory Status Author

1 Split Dirichlet Out of Core Operational t
2 Split Dirichlet In Core Operational +

3 Split Neuman IIn Core Operational 0

4 Split Neumann with In Core Operational 0

Green's Functions

5 Split Neumann with Iin Core Under 0

Green's Functions Development

6 Fourth Order Dirichlet and Neumann In Core Under 0

Development

t Orszag, Kells and Patera

+ Orszag, Bullister and Pelz

o McLaughlin

0 Leighton and Handler

* Ilandler, Leighton, Swean and Vang

There are two channel codes under development at NRL. The first is an adaptation

of code 4 using the alternate Green Function algorithm described in Section 2.2.1.d.

The second and more important one is based on the fourth order algorithm. Much of

the work for both has been completed, and both should be in the testing phase by the

end of calender year 1988.
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Currelitly. there are four distinlct (latsets which exist or will exist in the near

future. Each of these clataisets imay have mnore than oine emntry which will depend on

the resolutioni in time. There are ai dditioial two daitasets. A and DAG. The form-er

wais it hligh resoluitioni SIilltitoll which still contaliiledl adiaIsing errors. See Handler,

Leig-lmtoii mnd C'arroll( 19S7) for- at liscus-sioni of this (lataset. Program 4 wais run for

ai short time ( 1O0t* ). in order to deve01 ) (la-ta for dletermininig neami staitistics. The

short rim11 timie will hav a effect onl thle inein statistics, but is long enouigh to get a

fair idlea of the flow p~roperties. The relimmiig (lat asets are to b)e written to taipe using

the PDSDIMP routine onl tihe Cray and can b e brought up when needled.

In time da tasets Clhm2 and C'lmamti3. the differece iii time( scatles b~etw,,een entries was

clImseil to b e aboult a falctor of tenl. The Chimi .1. i= 1-3 dat aset are used for (documlenting

the miog tine a1verages. evahi iattioul thle proper orthmopoiul decomplosition. and sinilar

)eeswhere stalt istl(, i nd i ~ep~endent reahzat ions are needed. The C'hanil.2 (latasets

atre for ulse ill Conditional sampi~llig, flow visuailization and for- followving the general

evolution of the flow. Dait aset C'hmai4. 1 and Chnil.3 1=i2.3 aire for followinig the (details

of teimporal1 evolution.



Table 2.3

Data Sets For Turbulent Channel Flow

Namle D~omain I' Resolution R* t 0 Program St at us N otes

(y.Z,x) N \-,.Nz. Nxi

A -- 2.5.5 G5.,128.6 1 163 1 deleted Highly Aliased

([il 1.1 2.5.5 33,6-1.16 123 100 3 exists 28 realizations

(bani 1.2 2.5,5 3316.1.16 125 1 3 exists 2800. realizations 0

DG2.5,-) 33.61.16 1235 1 4 exists Diagnostics oly\

(lia2.1 2.5,10 33.6-1,32 1235 50 1 exists 50 realizations

('lan2.2 2,5,10 :33,64,32 12355 2 41 exists 500 realizations

CI i an2.3 2,5.10 :33.641,32 125 0.2 41 exists 128 realizations

(biai3.1 2,5.10 63.64,64 130 50 4 planned 50 realizat ions

(ihan3.2 2.5.10 6.5,.1,6-1 1350 2 4 planned 500 realizations

(1jan3,3 2.5,10 65,64,64 130 0.2 4 planned 128 realizatilonls

Chlail .1 2. 5, 5 65.6-4,32 123 0.1 1 exists 200 realizations

T Based onl channel hialf width, x.) X r 1 X X3.

0 Planar D~ata 0i1n1%.

ollie lwtvveenl realizations, all datasets nec-,( diinniiial except ('han 1.2.

AL', rWe( ;1) A iII te.

Se laillelr. Leighton anld Carrohll(117
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3. Results

3.1 One-point statistics

InI this section wve will coil-Are. the onec-polit statistics computed from the the

(lealiasedl (DA ) and the (lealiasedl-Greell function (DAG) (latasets. whose characteristics

have beenl disscussed III section 2.5. with exlperiluental data and wvith the KIMM results.

For any givenl comlponenit of velocity (or vortw ity), wvhich we will designate as 11 for

(71Ncovelece, we comlpute thc meani iiue . the' meani-square -value. 112 . the skewness,

V3. and the flatness, 14. as follows:

T1(x2)) 1/NZ E < ' Id (3.1)
j= I

112( X2 ) Y E/ < (Ili_ < Ili >)2 >' (3.2)

113 ( 1 2 ) 1N < (?Ij. < Il>)i > (3.3)

a 1 (x~ - /NE< (Ili_ < Il >)4 ,(34

where < > signifies a-veraging over a horizontal planie and the index j identifies each of

the N realizaions of the flow. Unless otherwise noted, we use the friction velocity, zt*,

ai1(l the viscous length. /*. as defined inl Section 2.1 to miake all -variables in this and

s1I)se(pleit. sections niondimensjoiial. W\e use the conivention that any variable with a

ra lse(l tst erisk has 1 )ee(n miadle nonldliensionaml using- viscous units.

A tylpicail tuirbulenit velocity profile shiouild exibit four distinct regionls which are

liance(1. inl order of increasing distance from the waill: the sublayer, buffer layer . loga-

nt linic region . andl the core. It, canil be shloN from theoreticail considerat ions, (see for

examiple Teniiekes and Lumlney. 19735) that the sublayer velocity p)rofile must be of the

forml 11 1 ;11'9 H a im htI logarlithmlic reg(Iin imust exist for which 77 A/n(X 2 * ) + B.

Hnssain andi Rey-nolds (1973) aissert tHat i fuilly developed chiannel flowv -4 2.44 and

B :- 5.0 although there is solme sca)t tel ill thme exp~erimnltal est'imates givcln for these
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constants. The mean velocity profile obtained fron the DA dataset is presented in

Figure 1 along with the profiles from Hussain and Reynolds and IKMM. We find that

the DA dataset gives good agreement with the experim,'ntal result and the higher res-

olution calculations. The logarithmic layer in the current calculation is not as thick (in

viscous units) as in the IKMM result. This is a direct consequence of the wall Reynolds

number difference (125 for DA and DAG anl 180 for IKMIM) since the wall to the cen-

terline distanc in viscous units is equal to the wall Reynolds number itself. It does not

appear, however, that the logarithnmic layer from the DA dataset is as clearly distinct

from the buffer layer as in the experiments or the K.M.M calculations.

The intensity profiles for the DA dataset are shown in Figure 2. The peak in

the intensity of the streamwise component of velocity occurs at a distance of 14.76

for the DA data which is in excellent agreement with KNIN and the experiments of

KIreplin and Eckehlann(1979) but the peak intensity level is somewhat lower than

either K-MIM or experiment. The DA and the KMNIM spanwise and wall-normal velocity

intensities are both considerably lower than the experimental results. (KIMNI reference

the work of Perry. Lim and Henbest(19S3) who maintain that cross-contamination

in hot wire measurements may be the cause of the higher wall-normal and spanwise

velocity intensities measured by many investigators.) Farther from the wall the DA

results show slightly lower intensities than the KM'IMNI results. We also note that there

is an unusually high value of the wall normal velocity intensity at a distance of 2.4.

This is an artifact of the application of a Neumann boundary condition on the pressure

ili the Orszag-Kells algorithm which has been discussed in Section 2.2.1.1).

The iean velocity profile and turbulence computed from the DAG dataset. which
wals "enieratedl using the Green function method discussed in Section 2.2.1.c. are pre-

seitel ii Figures 3 and 4. Th( DAG mean velocity profile exhibits a more clearly

defimied logaithiiic layer tham the DA )rofile and there are significant improvenlents in

b ehavi(or of the intensities. First. the stiramwise velocity iitensity has increased and

is 11,W vNry close to 1both IM.MMI and experiment. Secondly. the artifact produced aear

theN w-ll it the w'al-iiriimal velocity C mltNe('0 oneit has now vanished due to the Green

fi':ictiol crr 'ctioa which i mi"sIits ('nflu,ceinent (,f cnt inmitv at the wall. This implies

thi;,t w;al lor lm;,l deriv;ativ of u ii must v\iish at the wall. There is also a miaginal
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increase Ii t he NvallIiorial v el citv iilt( isity aiAd a soliiewia t larger d(ecreww5 In thle

Sl)8liVISe VeIl(citv ilitnsitv,.

In figure 5 wve coniipare the Revynoldl es comnputedl fromi the DA dlata with the

d\JM(ata andl the exp~erinmental (lata- of Eckeliannii(I14) who mlade measurements at

R* valuies of 142 and 208. The DA resuilts (recall that these calcullationlS Were lperformledl

at R* 123) are lin esill agrceliit with tihe Eckchlianni ( R* = 142) results but

areu ns~leallvlower t han thle K\ MM resuilts, (* = 1 SO) and~ thle higher Reynolds

numbler experimental value-s. i Figurev G tihe DAG i'esnIts show somlewhiat better

augreemnent with thme lower Revil( (1 mllr experliienital results. This comparison

suggests that for the relatively weak turbulence rep~resenltedl in the DA andl the KNM\I

(lata t hat somle of the discrep~ancy 1 etweenl these calculations nmay be due to Reynolds

number1wi diff(leeices.

Fromn this point onl ( Figues 7-10) wve will11 make comrparisonis only to the DAG

(latasets. In figure 7 the correlation coefficienit (Reyniolds stress niormalized by the

relevant root mleanl Square amlplitudes ) shows the same shiarp peak near the wall as in

the K\IM (hat ai althoug'h its vleis somnewhat higher. This is clearly it re-flec-tilonl of

thme lower tijbence Intensities i our calculation. W\e note however that the peak necar

the wall is abs"ent In the experimlents of Sabot andl~ Conite- Belot (1976).

The skewness, fo vm a l ioci tv Col )llonilit is plotted in Figures 8,9 and 10. The

da;t1 a gcei lcly11, agree withi thlie 1K \1- resuilts and( experinment al dlata. of Barlow andh Johni-

stoli (1983 ) a Id IKreplimi a1 mid Eckci 'mi 11 (1979). The not able exceptiomn is the normn al

C01oliilit of Nveloc.it\Vwhr KM:\ ;imd DAG agree 1)Imt differ significantly wNith the

VXPI11'rimem 1tit l dtai. Time flat nss fo~r ('a eli vlocity c )11llmemmt is plotted ini Figures 11,

12 amiid 13. Tiff agm'('('ii('iit l)(tw('(i tihe DAG amid thce (x1erilmlemtal dlata Is again plite

The moot iiwi -, a me( \'oriici t for' D AG Is pii t tcl Figi ire 14 amid sl iws excel(let

;l~('mi(1t itli thwe-1 IKll dtal amid( the(X)(rli(lt of Iatriai amnd Ecklmimimli

;The DAG ~1 ;i'i'vom'icity iw pmcciselv the salemmmmiiCiiim;mr the wall

aloi I . ;i- III tii( IKpii~it KIIiostimla1ti the existecec of wai1l layer

x'tir l tm.r to icjilaili thi' mmlixl)cted iresilt. The fla1essami skewness for the
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fluctuating component of vorticity are plotted in Figures 15 and 16 for which there are

no comparisons available.

Generally it can be concluded from these comparisons that the mean statistics of

the DAG dataset compare well with the highly resolved data of KMM. Our calculations

confirm the minimum in the spanwise vorticity as seen in the KMM work. These cal-

culations also confirm, in agreement with kNMI, spanwise and wall-normal turbulence

intensities that are lower than experimental values.

It is clear that the use of the Green function method improves the one-point

statistics computed with the unmodified Orszag-Kells method (i.e. the DA dataset).

However, an important issue has been raised by the results presented above. This

issue stems from the observation that simulations like those discussed here produce

one-point statistics which are remarkably close to those produced by the fully resolved

simulations of KMM. It certainly cannot be claimed that if one achieves good one-

point statistics that fundemental turbulent dynamics are also being captured. Indeed,

conditional sampling performed on the current data (Section 3.3) indicates a bursting

rate that is lower than experiment. On tile other hand, it is difficult not to conclude

that the underlying large scale (or coherent structures), which are being adequately

resolved at the resolutions presented here, must be dominating the global behavior of

the flow so that the modest resolutions employed here are adequate to achieve good

overall results. Certainly this is not a strong argument to justify the use of marginal

resolution but it does suggest that expansion functions determined from, for example,

a Karhunen-Loeve expansion (Lumley,1970) may be adequate to capture the essential

dynamics.
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3.2 Two point statistics

Using the DA data set, we have computed the complete two point correlation

function for the flow in the following manner. For any given realization of the flow,

u(x, t), we c ,mpute its Fourier coefficients, by:

.V, -1 N3-1E E ~2,rn i 2-k.i.

4((1 (n -0 X2)= u(l, , .2)e " I e N3
1=0 k=0

vhere

0, +1,

and

277 - ' 2 (3.5)

In these expressions we have implicitly defined collocation points (xl)l and (X3)k, and

wavenumbers (k1 ),, and (k3)... as follows:

(x, = I x L1/7V,

= k x L3 /N 3 ,

2 X 27r (3.6)

27,
S= l X--L3

in which L1 and L3 are the domain lengths in the streamwise and spanwise directions

respectively. In (3.3) time serves merely as a parameter which may be used to identify

any given flow realization and is therefore suppressed. We now follow Sirovich(1987)

who suggests that the geometric symmetries of a flow should be exploited to increase

the effective nulm'ber of realizations that are used in the averaging process. For the case

of channel flow. the equations of motion are invariant with respect to wall normal re-

flection. spanwise reflection, and rotation about the streamwise axis. These symmetries

vield additional spectral representations of the flow which can be written:
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11= {) 1 01, 17, -X2), -D 2 (7, n, -X2), ( 3
0 (n, m, -x2)1

,I, 2 = {i°(,n, X2), 1 2 )(n, -"1, X2), -¢3(f, -M, X2

I '3 = {140(n, -n.. -X2 ), -D 2 °(n, -7/, -122 ), -3(n, -n, - 2).

(3.7)

In these expressions, the superscripts 1, 2, and 3 refer to vertical reflection, span-

wise reflection, and streamwise rotation symmetries respectively and the zero super-

script refers to the unaltered (spectral) representation of the flow. The subscripts

continue to represent the coordinate directions as previously defined. The (complex)

spectrum T,,, can now be computed from:

3

'PO(n, M, X2,X2') =(4D ,1'01, 7n, X2 )D1P(n, in, X2')) (3.8)
p=O

where,

',,3 = 1,2 , 3.

The overbar designates complex conjugate, and the brackets represents an average over

all 30 realizations in the DA dataset. We note that in addition to the increase in the

effective size of the data base by a factor of four, the symmetries have the additional

advantage of reducing the size of 111,, also by a factor of four. A factor of two comes

from the spanwise symmetry which insures that %I'., is unique for n > 0 and m > 0.

A second factor of two comes from the vertical reflection symmetry which gives unique

values of the spectrum for -1 < x2 < 0 and -1 < X' < 1. The two point correlation

function , R,13 , can now be obtained fiom:

2 -a I ~li 2. mnki

Ra3(l, k', X2, X2') = K ), 7, 2 )NI c N3  (3.9)
n=0 rn=_ N "

2

where
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resolution remaining unchanged) and also by running at higher absolute grid resolution.

We also note, in Figure 18b, a clear example of the errors induced by the Orszag-Kells

algorithm near the wall. The curve labeled a, for v2,* = 0.602 appears to be completely

unrelated to the other curves in Figure 18b. For this distance from the wall the vertical

component of velocity undergoes a much too rapid loss of streamwise correlation. This

peculiar behavior must be connected to the boundary condition inconsistency problem

described in Section 2. It is interesting-to note, however, that this error shows up in

the correlation function only for the vertical velocity component and then only very

near the wall. This does not imply however, that, other errors are produced which are

not localized to the wall region. Indeed, as described in Section 3.1, we found some loss

of velocity fluctuation intensity in the buffer region. Finally, we note the interesting

behavior in the streamwise correlation curves for the spanwise velocity shown in Figure

18c. The clear separation of the curves below x2* = 14.76 and those above X2 * = 28.3

is evident which suggests that the spanwise velocity structure is particularly sensitive

to the differences between inner and outer layer physics.

In Figure 19 we present the wall normal dependence of the correlation function

by plotting Rof(x 2 , X2'). That is we plot Ro,, given by (3.9) with 1 = k = 0. The

correlations for the streamwise velocity (Figure 19a) are positive except for a weak

negative correlation for 45.7 < -2* < 77.2 which appear at values of X2 ' across the

centerline of the channel. Such weakly negative correlations also appear in isotropic

turbulence (see Hinze, 1975). The wall normal velocity correlations shown in Figure

19b are positive everywhere with the exception of the wildly oscillating positive and

negative behavior for xr* = 0.602. Again, this behavior is attributed to the operator

splitting errors discussed previously. In Figure 19(d we present the results for R 12 and

note that this function does not peak when X2' = , 2 and indeed there is no theoretical

reason for the peak to occur there. We note, for example, that close to the wall, say

for 0 < x 21* < 25, the peaks occur clearly at values of X2'* for which x2'* > X2*.

The spanwise velocity correlation function shown in Figure 19c shows the most

it'r('stillg behavior. We first note that for the curves 0 < ,2* < 21.07, the correlation

is always positive as we move into the wall. The curve for .7-2* = 28.37 shows the

first negative correlation values near the wall. All curves show negative correlation for
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somlle values of -. when .12' > -.2. (Jnu 1,osibhc interlretation of these correlations

is that near the wall there is a streaniwise oriente (l vrtex at ,* 20. That is, we

interpret the curve for x-2* = 21.07 as the c'li'lt/T of the wall vortex since its correla-

tion coefficient is ahnost zero but still sligl.t y positive near the wall. This location

of the wall vortex center is consistent with tie, interpretation of the vorticitv intensity

profiles. The second minima (i.e., the inaxi:iini ngative values which exist for each

cuive for 2 > £2 ) moves away from the wall roughly in proportion to x2. That is.

the scale of motion seen by observers farther from the wall is l)roportional to their

distance from the Wall. Xe remark, however, that any attempt to inter)ret these, or

any other long-time correlation functions in terms of some proposed flow structures

without the addition of flow visualization information is highly speculative. That is.

there could be inany possible flow structures which could be used to explain any set

of correlation functions. The striking feai.mui, of the R 33 funiction, however, do ap-

pear to be in agreement with the currently accepted viewpoint that streamwise vortex

structures exist near the wall. We also remark that perhaps the most objective way

of reconstructing a given three dimensional flow from the conplete three dimensional

correlation function is by means of more sophisticated statistical approaches such as

the orthogonal decomposition proposed by Lumley(1970).

Finally. in Figure 20 we compare our calculations with the measurements of Comte-

Bellot( 1965). WYe note first that these measurements were at a Reynolds number of

30. 000. a factor of 12 greater than in our calculations. This accounts for the consid-

erablyl more rapid decay inl the ineasured correlations. We note in particular that the

imeasu'ncints show small negative correlation values for ?, for the middle curve of

Figi ire 20a nd the two ( negative) minima il 1?:,:. These characteristics are b oth in

, xcell('It a eelli('lit witl (our calculations.

33



3.3 Conditional Sampling Results

3.3.1 Purpose

Conditional sampling of a turbulent channel flow is a heuristic search for events

or conditions which appear to have some relevance to the kinematics and dynamics of

the flow. The search is usually based on some pre-conceived idea or hypothesis which

is used as a condition. \\ hen the flow is conditionally sampled, the statistics about

the occurences of the events can be determined. Some statistics of interest may be the

frequency of occurence of the detected events, the ensemble average of the events, or a

histogram of some property associated with the detected event.

Conditional sampling has been used by many investigators to detect turbulent

bursts. A turbulent burst is an ill-defined event or sequence of events which is re-

sponsible for the generation of a disproportionate amount of the Reynolds stress and

turbulent kinetic energy. In a single turbulent burst, there may be several ejections

of low speed fluid from the wall region into the core. In addition, associated with the

turbulent burst is a shear layer which is usually detected as a sweep (it' > 0, u' < 0).

The ensemble average of the conditionally sampled events is considered to be a

representive event of the flow physics for a short period of time (say 10t*). The rapid

fluctuations seen in turbulent flow limit the significance of the ensemble after a short

time.

3.3.2 The One And Two Point Detections

There were two objectives to the one and two point detection tests. The first

objective was to d(eterimilnc if similar tinming statistics and elnseible averages could be

obtained from the numerical data set. Two standard detection schemes, the Variable

Interval Time Averaging sclmcne (VITA) aiid the Second Quadrant Detection schem.e

(2 ) were used. They were applied without t;king advantage of the spatial character

of the data: that is they were used( 's an eXpcirinenitalist would have applied them.
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The second objective was to determine the proximity of two events in space and time.

For example. a particular test was to determine how close two related Q2 events are in

time.

The VITA detection scheme is based on the observation that large fluctuations in

the streamwise velocity occur during a typical burst. These large fluctuations are caused

by a shear layer passing by the detector. The VITA technique measures the strength

and thickness of the shear layer by using a threshold parameter, k, and an averaging

tinie interval, T,. When the short time variance, properly normalized, exceeds the

threshold, k, a burst is detected. An additional condition of the sign of 8", is frequently

used. Unless noted in this work only positive slope events (-9 > 0) are retained.

The Reynolds stress can be sorted into the four quadrants in the u' - it' plane.

(See table 3.2) The second quadrant Reynolds stress algorithm, or the Q2 detection

algorithm is based on the observation that to be important, turbulent bursts must

develop Reynolds stresses, and second quadrant Reynolds stresses would be the defin-

ing property of turbulent ejections. In this detection scheme, an event is considered

significant if the magnitude of second quadrant Reynolds stress rises above a predeter-

mined level. Both of these algorithlns, along with others, are described in Luchik and

Tiedermann (1987).

Table 3.2

Reynolds Stress Quadrant

Quadrant V'l U 12 Physical Process

Q) > 0 > 0 Interaction

Q2 < 0 > 0 Ejection

Q3 > 0 < 0 Interaction

Q4 > 0 < 0 Sweep
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Table 3.3

Intra-Burst Ejection Time Scale

U-level Q2 threshold.h Intra-Burst ejection timescale

0.0 0.5 12.3

0.0 1.25 15.2

0.0 2.0 19.9

-0.5 0.5 11.2

-0.5 1.25 13.0

-0.5 2.0 16.0

-1.0 O.5 9.9

-1.0 1.25 11.0

-1.0 2.0 11.9

-1.5 0,5 9.5

-1.5 1.25 10.4

-1.5 2.0 10.6

The timescale discussed above relates two ejection events passing a single detector.

Of related interest is the probability of a second event being detected after an initial

detection. For example, how likely is the detection of a Q2 event at a location x, and

time T2 given that a detection has occured at a different location x, and time T1. We

may also ask how likely is a VITA event to follow or lead a Q2 event by some time

span. With this approach the relationship between differing detection schemes can be

studied.

The simulated flow was conditionally sampling at 32 points in the spanwise direc-

tion (ALx* = 20) at two streamwise locations. Then the following probability variable
was developed. It is not a normalized probability, but rather a probability relative
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to a random occurence. Before defining the probability variable, let us introduce the

following not ation: T1 ( i, n ) and T)( i, 71) is the detection time of an event i at spanwise

location n and streanwise location x (1) and x1 (2), respectively, where xj(1) is the

primary location and ,r (2) is the secondary location. Furthermore, introduce a time

shift T, = T - T". The parameter we want to define is the probability of detecting an

et-ent i at the location T(i, n) given a detection j at TI(j, n). This parameter is there-

fore a function of the two detection schemes applied, the shift in time, T , and the shift

in the streamwise direction X, = x1(2) -, ( 1 ). We therefore define the probability, p.

as follows:
1

p(X . T,)=- -{ numbner of events at T2(i, i) given a detection at T, (i. i)}

where N, is the total number of events detected at streamwise location .r1 (1). For large

time separations, the events at the two streamw- ise locations become uncorrelated. and

the probability becomes the frequency of the detection of the T, events. Therefore, if

the probability above is renormalized by the mean detection period of the T2 events, the

resulting lrolbaility is a measure of the likelihood that a detection will occur relative

to the random detection.

Some of the main results are as follows:

(1) Positive slope VITA events are less dispersive as they convect. When the primary

and secondary detectors use VITA and X* = 240, two peaks in the relative probability

can be seen. The first peak. centered in time about the convective shift 20t*, is a

result of those events detected at the primary location. A second peak, centered about

a convective shift of -40t* is a result of those events which will be detected at the

prinmry location.

(2) For X* = 240, the Q2 events show a similar two peaked behavior, but the peaks

have spread wider than for the VITA events. This implies that the convection speed

for the Q2 events is more varied than for the VITA events.
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Table 3.4

Program Flow Chart for Detection and Indexing of Streaks

Input/Output Routine Process

Velocity Fields - Lss.ftn Finds All Streaks

Sorted Streaks - Resort.Ftn Sorts Streaks In Time

Sorted and Indexed - Timing.Ftn Develops Statistics

Streaks Deletes Short Streaks

Typical low speed streaks can be seen in Figures 23 and 24. Figure 23 is a plan

view of the plane y* = 15. Figure 24 is a view looking upstream at the point x* = 0.

Both figures are of the strearnwise velocity. The shale regions indicate where the

fluctuating velocity is less than -u'l. The markers indicate where the streaks have

been detected and followed. There are ten detected streaks at this point in time.

Three in the vicinity of x* = 400 and x* = 300 are weakly defined.

The spacing of the detected streaks is about 100 to 130 viscous lengths apart,

which is consistent with experiments. Depending on the parameters used in the Lss.ftn

program, the average streak spacing was between 105 and 115 viscous lengths.

We also find (Fig. 24) that the locations detected occur under or near 'tunnel'

shaped shear surfaces. Consider the detections at .* - 90 and 190, which were typical

of smooth. steady, non-meandering low speed streaks. The locations x* = 340 and

530 come after the passage of a streak and are weakly defined since the streaks may

have lifted away from the wall. Note that inflection velocity profiles can be seen near

.* = 70. 350 and 320. all of which are near low speed streaks.

42



Figure 23 slows the evolution of the ilormal velocity along a low speed streak in

the streaniwise direction (the horizontal axis) as a function of time (the vertical axis).

The convection speed of the velocity perturbations remains about 10tu* even though

the strealwise velocit:," in the streak is about S - 9u*- A typical pair of Q2 events is
located at t* =0 and "* = 200. At t* 20 and a-* = 350 a perturbation in the normal

velocity is developing in front of an existing one. This is the development of a new Q2

event. The existing and the new perturbation may be related to the pair at 50, 200.

Unfortunately, the scheine which finds the initial streaks is not very robust. If a

streak develops a kink or dips below the plane in which the searching is done, it may be

'valuated as two streaks and the continuity in time is lost. Experimentally, the effects

of low speed streaks can be seen for a few thousand viscous time units, but when using

the algorithms developed on the data available, less that 3(A of the detected streaks

lasted more than 200t*. Better results are expected when the algorithm is applied

closer to the wall. where the flow is more stable.
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4. Conclusions

We have investigated, in some detail, the statistical properties of turbllent flow in

a channel using data generated from moderate resolution direct numerical simulations.

Both long-time averages and conditional averages were comIputed. Ve have concluded

that the use of the Green function method results in turlblence statistics which are

significantly closer to experiments than those produced with the Orszag-I-ells algo-

rithm Section 3.1). However. the velocity fluctuation intensities are still somewhat

lower than those produced by the fully resolved I \IMl calculation. This is particularly

true for the wall-normal and spanwise velocities. However. the vorticity profiles are

in excellent agreement with the 1,NIM results. For the two-poillt statistics presented

in Section 3.2 we find that the spanwise correlation lengths are ili excellent agreement

with the I1,\MM results when Reynolds num!ber differences are taken into account. The

strea-wise correlation lengths, particularly those of the streamwise velocity compo-

nent. are somewhat larger than the K.\IM result. We speculate that Reynolds number

differences, box length differences, and resolution may all be contributing to these

discrepancies. The wall-normal dependence of the spanwise velocity correlation func-

tion. Rt:3:(.r, x2'). shows behavior which is suggestive of near wall steamwise vortical

structures. The wall-normal dependence of each correlation function shows excellent,

qualitative agreement with the measurements of Cointe-Bellot.

The three conclusions to the conditional sampling work are: (1) the low speed

streak tracing is able to follow in space and time the low speed streaks, but the method

I(leds to be applied closer to the wall: (2) to determine temporal statistics, a dataset

with a longer doiain is needed. and: (3) the results from the two point conditional

sa )ling scherie indicate that there is a very definite correlation between VITA and

( events and that the model proposed in Leighton (19S6) is at least partially correct.

Further developments in conditional sampling will require an improved dataset and will

1,c finishe'd in the Inear fuiture.

Ve have foil11d that aliasing errols have significant effects on the final steady-state

siJlut ims to tlie XNavier-Stokes equations for chaiiinel flow ( Appendix A). When the
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calculation has converged to the prcdicted steady-state value of the wall shear stress and

aliasing errors are not elininated, we find that both the mean velocity and the centerline

velocity converge to values which are significantly lower than experimental values. In

addition. the velocitv fluctuation intensities, particularly that of the streamwise velocitv

component. are too low in amplitude and peak at distances too far from the wall. We

conclude that aliasing errors produce solutions which appear stable but which are very

much like the flow of underdeveloped turbulence. Aliasing errors appear to have a

damping effect on the turbulence. The strength of these effects may well be due to the

low resolution of these calculations. but what appears to us to be most interesting is that

when these errors are removed, the solution goes quickly back to that of experimentally

observed turbulence.
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Appendix

A. Effects of Aliasing Errors on the Behavior of Channel Flow Turbulence Calculations

1. Introduction

It has been known for some time that aliasing errors can have unwanted effects

on spectral calculations. In fact, in low resolution calculations, aliasing errors can lead

to catastrophic numerical instabilities. Before discussing the details of the effects of

aliasing in turbulent channel flow calculations, however, we first give a brief review of

the mathematical origin of aliasing errors. WNVe first begin with a simple example of

aliasing effects arising in the representation of a continuous one-dimensional function.

We assume that we are given a continuous function which is represented by an infinite

(convergent) Fourier series. That is, u(x) is given by:

ttX) E Z ke ikx (Al)
k=00

where

uk - u(X)e-ikx dx.

Now. we suppose that we sample the continuous function at the discrete points, xj

_ =. - 1. It follows that:

N/2 -1

1(xj) Z e ikxj (A2)
k=- N/2

and,

* N-1 (,Tj) - i k x j  (3)

j=0
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That is, we clearly distinguish the continuous Fourier modes from the discrete modes.

To find the relationship between these two sets of modes we write:

U* 1 N-ij vkcx (A4)

j k=-oo

or oo 1N-1

u;= Z F~.~7 ZC
i( - ),x

k=-oo j=O

where 1 N - i 1 -p x1N- r 1, if k -p= n.N i 0 ±1.... (A5)
J,=O0 otherwise.

j=O

Therefore, we find the following relationship between the discrete and continuous

modes:

O0
It*= fp+ 4 +,,N'. (AM)

The second term on the right represents the aliasing errors which contaminate the

discrete Fourier representation of u(x). We note that if there is no energy in u(x) beyond

mode N then these errors vanish and the discrete coefficients equal the continuous

coefficients.

In Navier-Stokes calculations, aliasing errors arise from the non-linear terms in the

equations of motion. For example, the term u x w gives rise to errors when the rota-

tional form of the equations are used. In pseudo-spectral calculations we perform the

nonlinear product of velocity and vorticity in physical space as opposed to computing

the convolution sums which would arise if a purely Galerkin procedure were used. This

procedure of performing the non-linear calculation in physical space has been shown

by Orszag(19711)) to be considerably more efficient then the Galerkin approach but
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then aliasing errors may contaminate the calculation. A simple example will clarify

the mathematical origin of aliasing due to nonlinearities. We are given the discrete

representation of two functions u(x) and v(x) as follows:

N12 -1

u(xj) = u e , (A7)
k=-N12

and
N/2-1

t'(.Irj) - V~e i r , (A8)

p=-N/2

where
2r

XJWJ

j =0,1, ..... N -1.

The product of these functions is then given by:

=j zZuk*VP CkP~i (A9)
k p

where

zj = u(Xj)v(xj)

and the Fourier coefficients of zj are:

Zq = '- k . 27(A

k p j=0

Now we use, again, the identity:
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N-i
NEi(k+p-q)xi 1, if k+p-q =nN m=0,0l,...;

N=) 0 otherwise. (All)
3=0

(AlO) becomes:

Zq = UkVp + Uk*VP. (A12)
(k,p) m=-o (k,p)

k+p=q mnoo k+p-q=-N

However, we note the following inequalities;

p ,1k , q N_ , (A13)

and

rnax(p + k - q) 3N

Since - < 2N it therefore follows that I m j< 1. The final result becomes:

q Uk*Vp* + Uk*Up Uk Vp*. (A14)

(k,p) (kp)
k+p=q k+p=q+N k4-pq-- N

The last two terms on the right land side of (A14) are termed aliasing errors. We
observe that if all modes N > (k,p) > N and-_" > (,,p) > _- are removed from

2 .3 3 2

the spectral representation of u and v and if their product is taken in physical space,

then there can be no aliasing errors in the region - > q > -", and > q > N

This fact was first observed by Orszag (1971a). We note that this so called 'two-

thirds rule' works because, for example, when k + q > -N aliasing errors are dumped

3
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into the region =1V > q > 'v. Since this region of the spectrum is nulled after the

non-linear product is taken, the calculation is alias-free. We note that to insure an

alias-free calculation one-third of the modes is the minimum number that need to be

removed and is therefore an optimal choice. In a typical three dimensional calculation

the dealiasing is traditionally performed only in the periodic plane and therefore in our

calculations dealiasing is performed using the "2/3 rule" in the xi - x 3 plane. There

is some evidence, however, that in the non-homogeneous direction, (x 2 ) that aliasing

effects may be important (Zang and Krist(1987)).

2. Results from low Resolution Aliased Channel Flow calculations

A relatively long run was made using the Orszag-Kells algorithm with the boundary

condition, u 2 = 0 on X2 = ±1, applied in the pressure step in which aliasing errors

were not removed. We used 33 x 64 x 16 grid points in the X2 , X3, and xI directions

respectively. The calculation was started with laminar initial conditions to which 2D

and 3D finite amplitude Orr-Sommerfeld modes were applied.

Before proceeding with a detailed description of the results, however, we review

the manner in which the flow is driven to a, steady-state. This is discussed in Handler,

Leighton. and Carroll(1987) but is reiterated here for the sake of completeness. First,

we note that in a physical experiment the flow is driven by a pressure gradient. In the

simulation, however, periodic boundary conditions are used in the streamwise direction

so that a differential pressure forcing cannot be prescribed. Thus, an external driving

force. f . is required in the equations of motion. We note, of course, that f is a

completely arbitrary function of space and time. If we define a control surface to be

that which encloses the entire computational domain, a momentum balance in the

streamwise direction gives:

0 11 -2 < 'r,, > o< .fl (x, t) > L2
- < IIi(x,t) > dX2 =2+ L2 (A1)

P U 2  PU 2
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In this expression, <>, represents averaging over a horizontal plane, -,-, is the

instantaneous shea ic at the x all, and fi is the streamwise colnpwient of Lhe force

per unit volume. The simple form of this expression is due to the use of periodic

boundary conditions which insures no net mass flow through the control surface and

no net forcing arising from normal stresses. It follows that for a globally steady flow

the time rate of change of momentum within the control volume must be zero, so that:

lira < r, > = L2 hll < f (x, t) > .(A16)

This can be written in non-dimensional form as:

lill R*(t) <li a f > L2f2  (A17)
t-c 0-0c pU 2

Thus, if the arbitrary force reaches a limit as t -+ cx, we can predict the final wall

Reynolds number.

Some global results of this aliased calculation are presented in Figures Al(a, b, c).
In this calculation, the force, f-, was fixed at - and R = 4000, so that we can predict

pU 2  R

from (A17) that the final Reynolds umber, R*, will be 4 = 126.49. We observe in

Figure Al(a) that R* initially increases rapidly as in the calculation of Orszag and

Patera (1983) but then, after the flow has gone through transition to turbulence, the

wall Reynolds number gradually decays to the predicted value. Some oscillations about

the predicted value of 126.49 occur but a dynamic equilibrium, that is a state in which

the driving force is balanced by shear stresses at the wall, has been achieved. We can

now use the correlations introduced by Dean(1978) for fully developed channel flow to

determine values for Ra and Rr, the Reynolds number based on centerline velocity,

UdJ. and that based on the average, or bulk., velocity U,,. We perform this calculation

by using the value R* = 126.49. The relationships:

I 2 - 0.073R,,, -. 2 (A18)

52



-rW u2 (A19)

and

U * (A20)
R

can be used to predict R,,, and the relation

UC = 1.28R,- 0 .0116  
(A21)

is used to predict the centerline velocity which can then be used to compute R,1 . The

results of this calculation give Rm = 3697.5 and Rdj = 2151.3. From Figures Al(b)

and Al(c) we find that, at the end of the calculation, Rm = 4470 and Rd = 2800.

Thus, we find that both the mean Reynolds number and centerline Reynolds number

are significantly higher then they would be in an experiment with this asymptotic value

of the wall shear stress. The effect of aliasing has been to give a larger mass flux for

the given pressure gradient (driving force) than for fully developed turbulence. This

gives a strong indication that the flow is not a fully developed turbulence. Evidence

for this is given in Figures 3(a, b) in which we have performed a somewhat different

calculation. Here we have used a fully converged solution which we obtained from

Steven Lyons at the Univ. of Illinois from an alias-free code as an initial condition

to our (aliased) code. We note that the effect of aliasing was first (Figure A2(a)) to

increase the centerline velocity and cause a dramatic loss of the logarithmic region

of the mean velocity profile that was clearly present in the initial condition. The

final velocity profile is very similar to that obtained by Patel and Head (1969) in

transitional (underdeveloped) turbulent channel flow. Xve also observe in Figure A2(b)

that the intensity of the streamwise velocity fluctuatioais are dramatically reduced and

the location of the maximum intensity has shifted farther from the wall.
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W\e also rep~ort oil aln 1depenldenlt test of the effects of aliasing perforined by Pami;!

19S7) who periformied low resolution channeil flow Calculationis InI which(. the dealias'iiut

alg-orithmn was turnedl on at an applrop~riate time in the calcuilatio!n. These results wi

shwn in F1i1ures A3( a ) andc A3(b1). We note, that the effect of (lealiasing was to cuu

a (iramnatic dlecrease in Lhe ceniterle velocityv wich is consistent with ourn result

There can be lit tle doubt from these iL-Siilts that alia'sing, errors. at least for these( l(),\

res.olu~t lonl calculatlonls, has a daipinl"" effect onl the turbullence. We observe first t ii;'

the effect is not clearlyr exhibited unless the calculatlonls are runl for verv lolly tili*~

so that these error,, have a chance to build and interfere inl someI way with thle pro 4 ' '

solution to the equations. Secondly, and perhaps ini(st importantly. tihe aliasmig rn1 r

ca~d no catastrophic numerical instabilities. Insteadl. the clle't s were u ui inl th

sense that earlier inl the calculations (results not shown iher(e thme imicalt velocityv pn u(fj D

did exhibit a logarithml-ic layer 'which subsequently dlisapplearedl. Ill co )nclisi( u. ;1al iai Iv

errors affect. in a significant m-anner. the lonig-timne 1wlmavior of the turbulent solut 1

to the equ'itions of motion. We speculate that ahiasing errors are acting very immuicli

like an external forcing which has both the proper p~hase aiid amlplitulde to cause' soicl

damping. but not a, complete destruction of the turbu~lnce.
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B. Calculation of Energies from Fourier Spectra

WVhen Fourier spectra are computed. as in (3.8), it is useful to check the results by

computing from them the mean square values, or energies, by integrating the spectra

over all wavenumbers. This result can then be compared with a 'direct' calculation of

the energy by squaring and averaging the physical variable of interest such as velocity

or pressure, for example, in its physical (space-time) representation. We derive here a,

convenient expression for a real function of two (space) variables that can be used to

make such a check. We first define the real function zt(x, y) and its Fourier coefficients

ak,p as follows:

'/2-1 N/2-1

E kp ix r- (B 1)
k= - N/2 p-N/2

and.
N-1 N-1i

1=0 11=0

The physical lengths are defined by xt = .- I and r, = 7r . The mean square energy,

a2. is given by
,N- 1I N-1

N-I ]2 UI,m 2 . (M3)
1=0 rn=O

It follows friom (B1) that:

2 5 5 a~ 1 N-1 N-1 iit C ak,,pal,..v,- F- 6 ikk),i(,p,, (B4)

k,p klpl 10 11=0

Use of the identities:

X - I
1.\ (+ , + p1. ifp +' = N 0. 1 .... (B)

0 otherwise.

111=0
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and
N-1 i(k+k'h" { 1 if k + k' ,,.V 0. (B6)

.AT E 10 otherwise.
1=0

and the use of the reality of it, that is Okp = a-k,-p, lead- to the following expression

for the energy:

U2 = a +,0 + aLN/2 ,0 + ao N/. + a±

N/ 2 - 1 N/2-1 N/2-1

21 Z a12 +Z j o,P12

k=+ p=- 1/2+l p=l

N/2-1 N/2-1
+ Z I_-/2,pI1 + E 2k-./l} (B7)

p=1 k=1

As discussed in Section 3.b, it is sometimes useful to impose the symmetry condition

ak,p ak,-p. If this is done the energy becomes:
U2 02 2 0_1 ,

+ -No + a N/2

N/2-1 N/2-1

S E akp 12
k=1 p=l

N1 /2-1 N/2-1

+2{ E Ia,O12 + ) . 12}
k=1

N/2 -1 N/2-1

+2f E IlA,/ 2,pl + 1 1,('k._V/221} (BS)
p=1 k=1

If we define the Fourier coefficients as follows:

ao,0 = 2Ao,O a-N/2.0 = 24A/2,0

a0.-.,,:/2 = 2_40._,'V/2 o N/2.- /2 = 24_.,-/2._,,./2
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ak,O = vf2Ak,o a.op = vf-Ao,p

a-N12,p =' v-.4_.%T,.,p ak.,-N1T2 = V2-Ak,-N12 (B9)

and.

ak.p = Ak,p

1< k < N/2--1 (B1O)

1 p < N/2 - 1.

then the energy can be conveniently cxpressed as

N/2 N/2

Y-2 = 4 E E IAk,P12 . (B11)

k=O p=O

(B1l) was used to compute tile mean square energies from the spectra, , The

results for the root mean square values for the streamwise, spanwise, and wall-normal

turbulence intensities are shown in Figure B1 and for the Reynolds stress ,u-U2 , in

Figure B2. One can see that these results are identical to the results obtained by

performing the 'direct' computation described in section 3.1 and shown in Figures 2

and 5. We conclude with a high degree of confidence that our calculaton of , is

correct.
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Fig. A 1(b) - Reynolds number based on mean velocity versus time.
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Fig. A I(c) - Reynolds number based on the centerline velocity versus time.
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Fig. A3(a) - Reynolds number behavior in channel flow turbulence with and without aliasing. (From Panda
(1987), Wall Reynolds number versus time (viscous units). 33 x 64 x 16 grid: - without dealiasing, ----,
with dealiasing.
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Fig. A3(b) - Reynolds number behavior in channel flow turbulence with and without aliasing. (From Panda
(1987)). Centerline velocity versus time.
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